الرياضيات
مجموعة الأعداد

1. Theorems

Try to prove these first!

  • We denote vp(n)v_p(n) as the greatest power of pp that divides nn.
  • (Legendre) vp(n!)=i=1npiv_p(n!) = \sum_{i=1}^{\infty} \lfloor \frac{n}{p^i} \rfloor
  • (LTE) If we have integers a,ba, b such that pabp | a-b then vp(anbn)=vp(ab)+vp(n)v_p(a^n-b^n) = v_p(a-b) + v_p(n). (Is this true for p=2p = 2, is there an extra condition?)
  • We say that the order of an element aa is d(modn)    dd \pmod n \iff d is the smallest number such that ad1(modn)a^d \equiv 1 \pmod n. We also denote dd by ordn(a)\operatorname{ord}_n(a).
  • Let d=ordn(a)d = \operatorname{ord}_n(a) then ak1(modn)    dka^k \equiv 1 \pmod n \iff d | k. Therefore dϕ(n)d | \phi(n).

2. Problems

  • (Lemma) Let nn be a natural number. Prove that τ(n)<2n\tau(n) < 2\sqrt{n}. Where τ(n)\tau(n) is the number of divisors of nn.
  • Let a,b,ca, b, c be positive reals such that 3a+b+c63 \le a+b+c \le 6. Prove a2+bc+b2+ca+c2+ab1\frac{a}{2+bc} + \frac{b}{2+ca} + \frac{c}{2+ab} \ge 1.
  • Let a,b,ca, b, c be positive integers with gcd(a,b,c)=1\gcd(a,b,c)=1 and a2+b2+c2=2(ab+bc+ca)a^2+b^2+c^2 = 2(ab+bc+ca). Prove that a,b,ca, b, c are perfect squares.
  • Let 0<x<10 < x < 1. The sequence x0,x1,x2,x_0, x_1, x_2, \dots is given by x0=1x_0=1 and xn+1=xxnx_{n+1} = x^{x_n} for every n0n \ge 0. Now fix an n>1n > 1, find the number of indices k<nk < n satisfying xk<xnx_k < x_n.
  • Find all pairs (n,k)(n, k) of non-negative integers satisfying: nk+1=(n2)!n^{k+1} = (n-2)!
  • Find all positive integers nn such that n=5τ(n)n = 5 \tau(n). Where τ(n)\tau(n) is the number of divisors of nn.
  • Each point on the plane has been colored one of 20222022 colors, prove that there is a rectangle with 4 points all of the same color.
  • 8 *. (Lemma) Suppose that a>b3a > b \ge 3 are integers. Prove that ba>abb^a > a^b.
  • Do there exist four different natural numbers such that ad=bcad=bc and n2a,b,c,d<(n+1)2?n^2 \le a, b, c, d < (n+1)^2?
  • Find all prime numbers pp and qq such that 1+pq1 + \frac{p}{q} is a prime number.
  • Let a,b,c>0a,b,c > 0. Prove: a3b3+b3c3+c3a3a2b2+b2c2+c2a2\frac{a^3}{b^3} + \frac{b^3}{c^3} + \frac{c^3}{a^3} \ge \frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2}
  • 12 *. Find all prime numbers pp such that p2p+1p^2-p+1 is a perfect cube.
  • It is given that a+b+c4ab+bc+caa+b+c \le 4 \le ab+bc+ca. Prove that at least two of the following quantities are not more than 2: ab,bc,ca.|a-b|, |b-c|, |c-a|.
  • Let pp be a prime number, a2a \ge 2, m1m \ge 1, am1(modp)a^m \equiv 1 \pmod p, ap1(modp2)a^p \equiv 1 \pmod{p^2}. Prove that am1(modp2)a^m \equiv 1 \pmod{p^2}.
  • Let pp be a prime number, aa a fixed number not divisible by pp. Prove that the sequence (ann)(a^n-n), n1n \ge 1 has infinitely many terms divisible by pp.
    1. Let x,y,zx,y,z be positive integers. Find all solutions (x,y,z)(x, y, z) satisfying x2+y2=3z2x^2+y^2=3z^2.
  • 17 **. (Pell's equation) Prove that there are infinitely many solutions to the equation a22b2=1a^2-2b^2=1.
  • 18 **. Five positive reals a,b,c,d,ea, b, c, d, e have a product of 11. Prove that a2b2+b2c2+c2d2+d2e2+e2a2a+b+c+d+ea^2b^2 + b^2c^2 + c^2d^2 + d^2e^2 + e^2a^2 \ge a+b+c+d+e.
آخر تحديث كان في